313 research outputs found

    Automatic generation of human machine interface screens from component-based reconfigurable virtual manufacturing cell

    Get PDF
    Increasing complexity and decreasing time-tomarket require changes in the traditional way of building automation systems. The paper describes a novel approach to automatically generate the Human Machine Interface (HMI) screens for component-based manufacturing cells based on their corresponding virtual models. Manufacturing cells are first prototyped and commissioned within a virtual engineering environment to validate and optimise the control behaviour. A framework for reusing the embedded control information in the virtual models to automatically generate the HMI screens is proposed. Finally, for proof of concept, the proposed solution is implemented and tested on a test rig

    Relations between classroom disciplinary problems and student motivation : Achievement as a potential mediator?

    Get PDF
    This study examined the relation between classroom disciplinary problems in language classes, student achievement, and three facets of student motivation: competence self-perceptions, test anxiety, and engagement. The analyses were conducted with the German sample from the Progress in International Reading Literacy Study (PIRLS) 2006 (N = 7899). The results demonstrated that discipline problems are directly and negatively related to achievement and to all motivation constructs considered. In most cases, the relation between classroom disciplinary problems and motivation constructs was mediated by verbal achievement. Boys were found to report more frequent discipline problems in classrooms than girls. This study contributes to research by assessing the impact of classroom disciplinary problems using doubly latent multilevel structural equation models in order to properly disaggregate effects occurring at the student, versus classroom level

    Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Get PDF
    In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations). The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates

    The dynamic cusp at low altitudes: A case study combining Viking, DMSP, and Sondrestrom incoherent scatter radar observations

    Get PDF
    A case study involving data from three satellites and a ground-based radar are presented. Focus is on a detailed discussion of observations of the dynamic cusp made on 24 Sep. 1986 in the dayside high-latitude ionosphere and interior magnetosphere. The relevant data from space-borne and ground-based sensors is presented. They include in-situ particle and field measurements from the DMSP-F7 and Viking spacecraft and Sondrestrom radar observations of the ionosphere. These data are augmented by observations of the IMF and the solar wind plasma. The observations are compared with predictions about the ionospheric response to the observed particle precipitation, obtained from an auroral model. It is shown that observations and model calculations fit well and provide a picture of the ionospheric footprint of the cusp in an invariant latitude versus local time frame. The combination of Viking, Sondrestrom radar, and IMP-8 data suggests that we observed an ionospheric signature of the dynamic cusp. Its spatial variation over time which appeared closely related to the southward component of the IMF was monitored

    Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis

    Get PDF
    We investigate the Northern Hemisphere Joule heating from several observational and computational sources with the purpose of calibrating a previously identified functional dependence between solar wind parameters and ionospheric total energy consumption computed from a global magnetohydrodynamic (MHD) simulation (Grand Unified Magnetosphere Ionosphere Coupling Simulation, GUMICS-4). In this paper, the calibration focuses on determining the amount and temporal characteristics of Northern Hemisphere Joule heating. Joule heating during a substorm is estimated from global observations, including electric fields provided by Super Dual Auroral Network (SuperDARN) and Pedersen conductances given by the ultraviolet (UV) and X-ray imagers on board the Polar satellite. Furthermore, Joule heating is assessed from several activity index proxies, large statistical surveys, assimilative data methods (AMIE), and the global MHD simulation GUMICS-4. We show that the temporal and spatial variation of the Joule heating computed from the GUMICS-4 simulation is consistent with observational and statistical methods. However, the different observational methods do not give a consistent estimate for the magnitude of the global Joule heating. We suggest that multiplying the GUMICS-4 total Joule heating by a factor of 10 approximates the observed Joule heating reasonably well. The lesser amount of Joule heating in GUMICS-4 is essentially caused by weaker Region 2 currents and polar cap potentials. We also show by theoretical arguments that multiplying independent measurements of averaged electric fields and Pedersen conductances yields an overestimation of Joule heating.<br><br> <b>Keywords.</b> Ionosphere (Auroral ionosphere; Modeling and forecasting; Electric fields and currents

    Geomagnetic disturbances at high latitudes during very low solar wind density event

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94969/1/grl13480.pd
    • ā€¦
    corecore